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Abstract
Purpose – To perform the flapwise bending vibration analysis of a rotating cantilever Timoshenko beam.
Design/methodology/approach – Kinetic and potential energy expressions are derived step by step. Hamiltonian approach is used to obtain the
governing equations of motion. Differential transform method (DTM) is applied to solve these equations.
Findings – It is observed that the rIV2u term which is ignored by many researchers and which becomes more important as the rotational speed
parameter increases must be included in the formulation.
Originality/value – Kinetic and potential energy expressions for rotating Timoshenko beams are derived clearly step by step. It is the first time, for the
best of author’s knowledge, that DTM has been applied to the blade type rotating Timoshenko beams.
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1. Introduction

There has been a growing interest in the analysis of the free

vibration characteristics of elastic structures that rotate with a

constant angular velocity. Numerous structural configurations

such as turbine, compressor and helicopter blades, spinning

spacecraft and satellite booms fall into this category.
Investigation of the natural frequency variation of rotating

beams originated from the work of Southwell and Gough

(1921). They suggested a simple equation (known as the

Southwell equation), which is based on the Rayleigh energy

theorem to estimate the natural frequencies of rotating

cantilever beams. Liebers (1930) and Theodorsen (1950)

extended Southwell’s work. Earlier studies mainly focused on

Euler Bernoulli beams. However, due to the inclusion of shear

deformation and rotary inertia effects, Timoshenko beam

theory is more accurate than Euler Bernoulli beam theory.

Therefore, considerable research has been carried out on the

free vibrations of rotating Timoshenko beams, recently

(Stafford and Giurgiutiu, 1975; Yokoyama, 1988; Lee and

Kuo, 1993; Du et al., 1994; Nagaraj, 1996; Bazoune et al.,

1999; Banerjee, 2001).
Different types of solution procedures, i.e. the finite element

method, the Frobenius method of series, the Galerkin method,

the Myklestad procedure, the finite differences approach, the

perturbation technique, Bessel functions, etc. may be found in

the literature. In this study, the differential transform method

(DTM), which is a semi analytical-numerical technique that

depends on Taylor series expansion and which was introduced

by Zhou (1986) in his study about electrical circuits, is used.

Recently, Banerjee (2001) has developed theDynamic Stiffness

Method for a rotating cantileverTimoshenkobeam that is based

on Frobenius series expansion and claims its superiority of

finding more correct results. However, application of this

method, as he pointed out, is not so easy. On the other hand, the

advantage of the DTM is its simplicity and high accuracy.

2. Description of the problem

In Figure 1, a cantilever beam of length L, which is rigidly

mounted on the periphery of a rigid hub of radius R, is shown.

The hub rotates about its axis at a constant angular speed V.

The origin is taken to be at the left-hand end of the beam.

The x-axis coincides with the neutral axis of the beam in the

undeflected position, the z-axis is parallel to the axis of

rotation (but not coincidental) and the y-axis lies in the plane

of rotation. The beam considered here is doubly symmetric

such that the mass axis, the centroidal axis and the elastic axis

are coincident.
The following assumptions are made in this study:

. The out-of-plane displacement of the beam is small.

. The cross sections that are initially perpendicular to the

neutral axis of the beam remain plane, but no longer

perpendicular to the neutral axis during bending.
. The beam material is homogeneous and isotropic.
. Coriolis effects are not included.

3. Formulation

Most of the investigators begin their studies by introducing

the equations of motion directly. However, in this paper the

potential and the kinetic energy expressions are derived step

by step and then, equations of motion are obtained using the

Hamiltonian approach.
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3.1 Strain displacement relations

Several different classical definitions of strain may be found in

literature, depending on the mathematical formulation,

reference states (based on deformed or undeformed

positions), and coordinate systems used.
The flapwise motion of a Timoshenko beam is given in

Figure 2(a) and (b). In Figure 2(a), longitudinal view of

displacement of a point is introduced and in Figure 2(b),

cross-sectional view of displacement of the same point is

introduced. In these graphics, the point is represented by P0

before deformation and by P after deformation.
The vector position of the point is defined as:

~r ¼ x~iþ y~jþ z~k ð1Þ

Keeping in mind that the subscripts ( )0 and ( )1 represent the

positions of the point before and after deformation,

respectively, these positions can be given as follows.
. Before deformation:

x0 ¼ Rþ x ð2aÞ

y0 ¼ h ð2bÞ

z0 ¼ j ð2cÞ
. After deformation:

x1 ¼ Rþ xþ u0 2 ju ð3aÞ

y1 ¼ h ð3bÞ

z1 ¼ wþ j ð3cÞ

Here, x is the spanwise distance of the point from the hub

edge, uo is the axial displacement due to the centrifugal force,

h is the transverse distance of the point from the axis of

rotation, j is the vertical distance of the point from the middle

plane, w is the bending displacement and u is the rotation due

to bending.
Knowing that ~r0 and ~r1 are the vector positions of the point

on the undeformed and deformed blade, respectively, the

position vector differentials can be given by:

d~r0 ¼ dx~iþ dh~jþ dj~k ð4Þ

d~r1 ¼ ½ð1þ u00 2 ju0Þdx2 udj �~iþ dh~jþ ðw0 dxþ djÞ~k ð5Þ

where dx, dh and dj are the increments along the deformed

elastic axis and two cross-sectional axes, respectively.
The classical strain tensor 1ij in terms of ~r1 and ~r0 may be

expressed as follows:

d~r1 · d~r1 2 d~r0 · d~r0 ¼ 2b dx dh djc ½1ij �

dx

dh

dj

8>><
>>:

9>>=
>>; ð6Þ

Substituting equations (4) and (5) into equation (6),

components of the strain tensor 1ij are obtained as:

21xx ¼ ð1þ u00 2 ju 0Þ2 þ ðw0Þ2 2 1 ð7aÞ

gxh ¼ 0 ð7bÞ

gxj ¼ w0 2 ð1þ u00 2 ju 0Þu ð7cÞ

In order to obtain simple expressions for the strain

components, higher order terms should be neglected, so an

order of magnitude analysis is necessary. The ordering

scheme is taken from Hodges and Dowell (1974) and

introduced in Table I. Simplified strain components are

obtained as follows by ignoring the terms which are higher

than 12.

1xx ¼ u00 2 ju 0 þ ðw0Þ2

2
ð8aÞ

gxh ¼ 0 ð8bÞ

gxj ¼ w0 2 u ð8cÞ

where gxj is the loss of slope that is equal to the shear strain.

Figure 1 Configuration of a rotating cantilever Timoshenko beam
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3.2 Expression for the potential energy

The strain energy due to bending, Ub, is given by:

Ub ¼
V

ððð
E12xx
2

dV ð9Þ

Substituting equation (8a) into equation (9) leads to:

Ub ¼
E

2
A

Z Z L

0

u00 2 ju 0 þ 1

2
ðw0Þ2

� �2

dxdA ð10Þ

where A is the cross-sectional area and E is the Young’s

modulus. Taking integration over the blade cross section

gives:

Ub ¼
1

2

Z L

0

EAðu00Þ
2
dxþ 1

2

Z L

0

EIðu0Þ2dxþ 1

2

Z L

0

EAu00ðw0Þ2dx

ð11Þ

where:

I ¼
A

Z
j2dA

is the second moment of area of the beam cross section about

the y-axis, EI is the bending rigidity and EA is the axial

rigidity of the beam cross section.
The uniform strain 1o and the associated axial displacement

uo due to the centrifugal force, T(x) is given by:

u00ðxÞ ¼ 10ðxÞ ¼
T ðxÞ
EA

ð12Þ

where the centrifugal force that varies along the spanwise

direction of the beam is:

T ðxÞ ¼
Z L

x

rAV2ðRþ xÞdx ð13Þ

Substituting equation (13) into equation (12) and noting that

the

Table I Ordering scheme

u
R 5 Oð1 2Þ x

R ¼ Oð1Þ
v
R 5 Oð1Þ h

R ¼ Oð1Þ
w
R 5 Oð1Þ j

R ¼ Oð1Þ

C5 Oð1Þ g ¼ w 0 2 w ¼ Oð1 2Þ

w 5 Oð1Þ

Figure 2
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1

2

Z L

0

T 2ðxÞ
EA

dx

term is constant and will be denoted as C1, we get the final

form of the bending strain energy as follows:

Ub ¼
1

2

Z L

0

EIðu 0Þ2dxþ 1

2

Z L

0

Tðw0Þ2dxþ C1 ð14Þ

The strain energy due to shear, Us; is given by:

Us ¼
V

ðððG g2
xh þ g 2

xj

� �
2

dV ¼ 1

2
A

Z Z L

0

G g 2
xh þ g2

xj

� �
dAdx

ð15Þ

where G is the shear modulus.
Substituting equations (8b) and (8c) into equation (15), we

get the final form of the shear strain energy as follows:

Us ¼
1

2
A

Z Z L

0

Gðw0 2 uÞ2dAdx ¼ 1

2

Z L

0

kAGðw0 2 uÞ2dx

ð16Þ

where k is the shear correction factor that depends on the

shape of the cross section (for circular and rectangular cross

sections, the values of k are 2/3 and 3/4, respectively) and that

is used to take into account the variation of shear stress across

the thickness and kAG is the shear rigidity.
Combining all the strain energy components, the total

strain energy U of the beam is found to be:

U ¼ Ub þUs ¼
1

2

Z L

0

{EIðu 0Þ2 þ kAGðw0 2 uÞ2 þ Tðw0Þ2}dx
� �

ð17Þ

The first term in equation (17) represents the flexural strain

energy, the second term the shear strain energy and the last

term the strain energy due to the centrifugal force.

3.3 Expression for the kinetic energy

The velocity of the representative point P due to rotation of

the beam is given by:

~V ¼ d~r

dt
þV~k £ ~r1 ð18Þ

The total velocity ~V can be expressed in terms of deformed

positions as follows:

~V ¼ ð_x1 2Vy1Þ~iþ ð_y1 þVx1Þ~jþ _z1~k ð19Þ

Substituting the derivatives of equations (3a)-(3c) with

respect to time, t, into equation (19), the velocity

components are obtained as follows:

Vx ¼ 2j _u2 hV ð20aÞ

Vy ¼ ðRþ xþ u0 2 juÞV ð20bÞ

Vz ¼ _w ð20cÞ

The kinetic energy is given by:

I ¼ 1

2
A

Z Z L

0

ðV 2
x þ V 2

y þ V 2
zÞrdAdx ð21Þ

Substituting the velocity components introduced in equations
(20a)-(20c) into equation (21), the final form of the kinetic
energy expression is obtained.

I ¼ 1

2

Z L

0

½rA _w2 þ rI _u2 þ rIV2u2�dx ð22Þ

3.4 Derivation of the governing differential equations

of motion

The governing differential equations of motion and the
boundary conditions can be derived by means of the
Hamiltonian approach, which can be stated in the following
form: Z t2

t1

ðdI2 dUÞdt ¼ 0 ð23Þ

where dw ¼ du ¼ 0 at t1 and t2.
After integration, the equations of motion are obtained as

follows:

2rA €wþ ðTw0Þ0 þ ½kAGðw0 2 uÞ�0 ¼ 0 ð24Þ

2rI €uþ rIV2uþ ðEIu 0Þ0 þ kAGðw0 2 uÞ ¼ 0 ð25Þ

Equations (24) and (25) define completely the free vibration

of a uniform rotating Timoshenko beam. Here w is the out-of-
plane displacement and u is the rotation due to bending.
It must be noted that although the term rIV2u can be

important when the constant rotational speed, V is high, it is
not taken into account by some authors. The physical
description of this term is that as a result of the bending
deformation, the radii of the elements that are symmetrically
placed with respect to the mid-plane of the beam cross section
are different so these elements have different centrifugal forces

although the net centrifugal force is independent of the
section rotation. Thus, a moment that has the value of rIV2u

appears.
Primes in equations (24) and (25) mean differentiation with

respect to the spanwise position, x and dots mean
differentiation with respect to time, t; r is the material
density and rA is the mass per unit length. Here, rA and rI
are the inertia terms.
The boundary conditions at x ¼ 0 and x ¼ L for equations

(24) and (25) are given by:

u 0dujL0 ¼ 0 ð26Þ

Tw0 þ kAGðw0 2 uÞ�dw½ jL0 ¼ 0 ð27Þ

3.5 Free vibration analysis

A sinusoidal variation of nðx; tÞ and uðx; tÞ with circular
frequency v can be given by:

wðx; tÞ ¼ W ðxÞeivt ð28Þ

uðx; tÞ ¼ �uðxÞeivt ð29Þ

Substituting equations (28) and (29) into equations (24) and
(25), equations of motion are expressed as follows:
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rIv2 �uþ rIV2 �uþ EI �u00 þ kAGðW 0 2 �uÞ ¼ 0 ð30Þ

mv2W þ ðTw0Þ0 þ kAGðW 00 2 �u 0Þ ¼ 0 ð31Þ

3.6 Nondimensionalizing of the problem

The dimensionless parameters that are used to simplify the

equations and to make comparisons with the studies in

literature can be given as follows:

j ¼ x

L
; d ¼ R

L
; W ðjÞ ¼ W

L
; r2 ¼ I

AL2
;

s2 ¼ EI

kAGL2
; h2 ¼ rAL4V2

EI
; m2 ¼ rAL4v2

EI

ð32Þ

Here d is the hub radius parameter, r is the rotary inertia

parameter, s is the shear deformation parameter, h is the

rotational speed parameter and m is the frequency parameter.
Using the first two dimensionless parameters,

dimensionless expression for the centrifugal force can be

written as follows:

T ðjÞ ¼ rAV2L2 dð12 jÞ þ ð12 j2Þ
2

� �
ð33Þ

Substituting equations (32) and (33) into equations (30) and

(31), the dimensionless form of the equations of motion are

obtained

u 00 þ h2r2 1þ v2

V2

� �
uþ 1

s2
ðw0 2 uÞ ¼ 0 ð34Þ

dð12jÞþð12j2Þ
2

� �
w0

� �0

þ v2

V2

� �
wþ 1

s2h2
ðw002u 0Þ¼0 ð35Þ

4. Differential transform method

The DTM is one of the useful techniques to solve the

ordinary differential equations with fast convergence rate and

small calculation error. One advantage of this method over

the integral transformation methods is its ability to handle

nonlinear differential equations, either initial value problems

or boundary value problems. It was introduced by Zhou

(1986) in his study about electrical circuit. Recently, it has

gained much attention by researchers (Arikoglu and Ozkol,

2004, 2005; Bert and Zeng, 2004; Chen and Ju, 2004;

Ozdemir and Kaya, 2005).
Let f(x) be analytic in a domain D and let x ¼ x0 represent

any point in D. The function f(x) is then represented by one

power series whose center is located at x0. The differential

transform of the function f(x) is defined as follows:

F½k � ¼ 1

k!

dkf ðxÞ
dxk

� �
x¼x0

ð36Þ

where f(x) is the original function and F[k ] is the transformed

function.
The inverse transformation is defined as:

f ðxÞ ¼
X1
k¼0

ðx2 x0ÞkF½k � ð37Þ

Combining equations (36) and (37), one obtains:

f ðxÞ ¼
X1
k¼0

ðx2 x0Þk

k!

dkf ðxÞ
dxk

� �
x¼x0

ð38Þ

Considering equation (38), it is noticed that the concept of

differential transform is derived from Taylor series expansion.

However, the method does not evaluate the derivatives

symbolically.
In actual applications, the function f(x) is expressed by a

finite series and equation (38) can be written as follows:

f ðxÞ ¼
Xn
k¼0

ðx2 x0Þk

k!

dkf ðxÞ
dxk

� �
x¼x0

ð39Þ

which implies that:

f ðxÞ ¼
X1

k¼nþ1

ðx2 x0Þk

k!

dkf ðxÞ
dxk

� �
x¼x0

is negligibly small. In this study, the convergence of the

natural frequencies determines the value of n.
Theorems that are frequently used in the transformation of

the equations of motion and the boundary conditions are

introduced in Tables II and III, respectively.

5. Solution with DTM

In the solution stage, the DTM is applied to the equations

(34) and (35) by using the rules given in Table II and the

following expressions are obtained.

dþ 1

2
þ 1

s2h2

� �
ðkþ 2Þðkþ 1ÞW ðkþ 2Þ2 dðkþ 1Þ2W ðkþ 1Þ

þ v2

V2
2

kðkþ 1Þ
2

� �
W ðkÞ2 ðkþ 1Þuðkþ 1Þ ¼ 0

ð40Þ

ðkþ 2Þðkþ 1Þuðkþ 2Þ þ h2r2 1þ v2

V2

� �
2

1

s2

� �
uðkÞ

þ 1

s2
ðkþ 1ÞW ðkþ 1Þ ¼ 0

ð41Þ

Applying the DTM to equations (26) and (27), the boundary

conditions are given by:

at j ¼ 0 ) uð0Þ ¼ W ð0Þ ¼ 0 ð42Þ

at j ¼ 1 )
X1
k¼0

kuðkÞ ¼ 0 ð43Þ

X1
k¼0

½kW ðkÞ2 uðkÞ� ¼ 0 ð44Þ

Table II Basic theorems of DTM for equations of motion

Original function Transformed functions

f ðxÞ ¼ gðxÞ^ hðxÞ F ½k� ¼ G½k�^ H½k�
f ðxÞ ¼ lgðxÞ F ½k� ¼ lG½k�
f ðxÞ ¼ gðxÞhðxÞ F ½k� ¼

Pk
l¼0 G½k 2 l�H½l�

f ðxÞ ¼ dngðxÞ
dxn F ½k� ¼ ðkþnÞ!

k! G½k þ n�

f ðxÞ ¼ x n F ½k� ¼ d ðk 2 nÞ ¼
0 if k – n

1 if k ¼ n

(
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In equations (40)-(44), W(k) and u(k) are the differential
transforms of w(j) and u(j), respectively. Using equations
(40) and (41), W(k) and u(k) values for k ¼ 2; 3; 4. . . can now
be evaluated in terms of v2; c1 and c2. These values were
achieved by using the Mathematica computer package. The
results are introduced below for the values d ¼ 0; r ¼ 0:04;
s ¼ 2r and h ¼ 8:

uð2Þ ¼ 278:125c2

uð3Þ ¼ 2c1ð24:40967þ 0:000267v2Þ

uð4Þ ¼ 2c2ð174:472 0:045v2Þ

W ð2Þ ¼ 0:415007c1

W ð3Þ ¼ 2c2ð21:558þ 0:000885v2Þ

W ð4Þ ¼ c1ð0:952 0:00024v2Þ

where c1 and c2 are constants. Substituting all W(i) and u(i)
terms into boundary condition expressions, i.e. equations
(42) and (43), the following equation is obtained.

A
ðnÞ
j1 ðvÞc1 þ A

ðnÞ
j2 ðvÞc2 ¼ 0; j ¼ 1; 2; 3; . . .n ð45Þ

where A
ðnÞ
j1 ðvÞ;AðnÞ

j2 ðvÞ are polynomials of v corresponding to
nth term.
When equation (45) is written in matrix form, we get:

An
11ðvÞ An

12ðvÞ
An

21ðvÞ An
22ðvÞ

" #
c1

c2

( )
¼

0

0

( )
ð46Þ

The eigenvalue equation is obtained from equation (46) as
follows:

An
11ðvÞ An

12ðvÞ
An

21ðvÞ An
22ðvÞ

					
					 ¼ 0 ð47Þ

Solving equation (47), we get v ¼ v
ðnÞ
j where j ¼ 1; 2; 3; . . .n:

Here, v
ðnÞ
j is the jth estimated eigenvalue corresponding to n.

The value of n is obtained by the following equation:

v
ðnÞ
j 2 v

ðn21Þ
j

			 			 # 1 ð48Þ

where 1 is the tolerance parameter.
If equation (48) is satisfied, then we have jth eigenvalue

v
ðnÞ
j : In general, v

ðnÞ
j are conjugated complex values, and can

be written as v
ðnÞ
j ¼ aj þ ibj . Neglecting the small imaginary

part bj, we have the jth natural frequency aj.

6. Results and discussion

The computer package Mathematica is used to code the
expressions obtained by using DTM, to calculate the

natural frequencies and to plot the related graphics. In

order to validate the computed results, an illustrative

example taken from Banerjee (2001) is solved and the

results are compared with the ones in the same reference

paper.
The results of Table IV illustrate the effect of the rotational

speed parameter, h, on the fundamental natural frequency of

the Timoshenko beam. Present study and Banerjee (2001)

show good agreement up to the fourth digit. However, the

results of Lee and Kuo (1993) differ from the results of this

study and the difference increases with the increasing

rotational speed parameter, h, due to the lack of rIV2u

term in the equations of Lee and Kuo (1993).
Additionally, variation of the fundamental natural

frequency of a rotating Timoshenko beam with cantilever

end condition with respect to various values of Sð¼ 1=rÞ
and h is introduced in Table V. As it is seen in this table,

the agreement between the results of the present study and

Banerjee (2001) is excellent. In the case of a nonrotating

beam ðh ¼ 0Þ; a good agreement with Lee and Kuo (1993)

is observed, but in the case of rotation ðh ¼ 5Þ; the results

do not match due to the reason mention before.
Moreover, in Table VI, variation of the fundamental

natural frequency of rotating Timoshenko beam is given for

various values of the Timoshenko effect parameter, r, and

the rotational speed parameter, h. As expected, the values

of the natural frequencies increase with the increasing

rotational speed parameter due to the stiffening effect of

the centrifugal force and the natural frequencies decrease

as the Timoshenko effect is increased because the shear

deformation has a decreasing effect on the natural

frequencies. The results of the present study and Banerjee

(2001) agree completely. However, due to missing term

mentioned before, the difference between Du et al. (1994)

increases with the increasing rotation speed parameter h.
In Figure 3, variation of the first five natural frequencies

of a rotating beam with respect to the Timoshenko

effect parameter, r, is given. For all modes, the natural

frequencies decrease with increasing r because shear

deformation has a decreasing effect on the natural

frequencies, but the Timoshenko effect is more dominant

on higher modes as expected so the higher mode

frequencies of the rotating beam decrease remarkably on

account of the rotary inertia parameter while the lower

modes are nearly unaffected.
Furthermore, nondimensional frequency variation with

respect to the Timoshenko effect, r, is given in Figure 4.

Nondimensionalization is made with respect to natural

frequency parameter of Bernoulli-Euler beam, m0. As

discussed above, decreasing of natural frequency for higher

modes is evident.

Table III DTM theorems for boundary conditions

x5 0 x5 1

Original BC Transformed BC Original BC Transformed BC

f ð0Þ ¼ 0 F ½0� ¼ 0 f ð1Þ ¼ 0
P1

k¼0 F ½k� ¼ 0
df
dx ð0Þ ¼ 0 F ½1� ¼ 0 df

dx ð1Þ ¼ 0
P1

k¼0 kF ½k� ¼ 0

d2f
dx 2 ð0Þ ¼ 0 F ½2� ¼ 0 d2f

dx 2 ð1Þ ¼ 0
P1

k¼0 k ðk 2 1ÞF ½k� ¼ 0

d3f
dx 3 ð0Þ ¼ 0 F ½3� ¼ 0 d3f

dx 3 ð1Þ ¼ 0
P1

k¼0 k ðk 2 1Þðk 2 2ÞF ½k� ¼ 0

Free vibration analysis of a rotating Timoshenko beam

Metin O. Kaya

Aircraft Engineering and Aerospace Technology: An International Journal

Volume 78 · Number 3 · 2006 · 194–203

199



Table V Variation of the fundamental natural frequency of a rotating Timoshenko beam with cantilever end condition with respect to the inverse of the
Timoshenko effect parameter, Sð¼ 1=rÞ; and the rotational speed parameter, h (d ¼ 0; E=kG ¼ 3:059)

Fundamental natural frequency parameter (m)

h5 0 h5 5

S Present study Banerjee Lee Kuo Present study Banerjee Lee Kuo

20 3.4364 3.4364 3.4364 6.3126 6.3126 6.3241

30 3.4798 3.4798 3.5798 6.3858 6.3858 6.3934

40 3.4955 3.4955 3.4954 6.4131 6.4131 6.4179

50 3.5028 3.5028 3.5028 6.4260 6.4260 6.4294

80 3.5108 3.5108 3.5108 6.4403 6.4403 6.4418

100 3.5127 3.5127 3.5126 6.4436 6.4436 6.4446

150 3.5145 3.5145 3.5144 6.4469 6.4469 6.4476

200 3.5152 3.5152 3.5152 6.4481 6.4481 6.4485

300 3.5156 3.5156 3.5155 6.4489 6.4489 6.4493

500 3.5159 – – 6.4493 – –

1,000 3.5160 – – 6.4495 – –

Table VI Variaton of the fundamental natural frequency of a rotating Timoshenko beam with cantilever end condition with respect to the Timoshenko
effect r and the rotational speed parameter h (d ¼ 0; k ¼ 2=3; E=G ¼ 8=3)

Fundamental natural frequency parameter (m)

h5 0 h5 4 h5 8 h5 12

r Present study Banerjee Du et al. Present study Banerjee Du et al. Present study Banerjee Du et al. Present study Banerjee Du et al.

0 3.5160 3.5160 3.516 5.5850 5.5850 5.585 9.2568 9.2568 9.257 13.170 13.170 13.170

0.01 3.5119 3.5119 3.512 5.5791 5.5791 5.580 9.2447 9.2447 9.246 13.148 13.148 13.150

0.02 3.4998 3.4998 3.500 5.5616 5.5616 5.564 9.2096 9.2096 9.215 13.087 13.087 13.087

0.03 3.4799 3.4799 3.480 5.5332 5.5332 5.539 9.1549 9.1549 9.167 12.998 12.998 13.015

0.04 3.4527 3.4527 3.453 5.4951 5.4951 5.505 9.0854 9.0854 9.106 12.893 12.893 12.923

0.05 3.4187 3.4187 3.419 5.4487 5.4487 5.463 9.0060 9.0060 9.036 12.783 12.783 12.827

0.06 3.3787 3.3787 3.379 5.3954 5.3954 5.415 8.9208 8.9208 8.963 12.672 12.672 12.734

0.07 3.3335 3.3335 3.333 5.3370 5.3370 5.363 8.8333 8.8333 8.889 12.564 12.564 12.646

0.08 3.2837 3.2837 3.248 5.2749 5.2749 5.307 8.7456 8.7456 8.815 12.458 12.458 12.564

0.09 3.2302 3.2302 3.230 5.2104 5.2104 5.249 8.6588 8.6588 8.744 12.353 12.353 12.487

0.1 3.1738 3.1738 3.174 5.1448 5.1448 5.191 8.5735 8.5735 8.677 12.247 12.247 12.415

0.15 2.8692 – – 4.8262 – – 8.1406 – – 11.398 – –

Table IV Variation of the fundamental natural frequencies of a rotating Timoshenko beam with cantilever end condition for various values of the
rotational speed parameter h (d ¼ 0; r ¼ 1=30; E=kG ¼ 3:059)

Fundamental natural frequency m1

h Present study Banerjee (2001) Lee and Kuo (1993)

0 3.4798 3.4798 3.4798

1 3.6445 3.6445 3.6452

2 4.0971 4.0971 4.0994

3 4.7516 4.7516 4.7558

4 5.5314 5.5314 5.5375

5 6.3858 6.3858 6.3934

10 11.0643 – –
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The variation of first five natural frequencies with respect

to rotational speed, h, is given in Figure 5. As expected,
due to the centrifugal stiffening effect, natural frequencies
increase with increasing rotational speed, h. The natural

frequency increase due to the centrifugal stiffening is much
evident for lower modes than the higher ones.
Moreover, variation of the natural frequencies with respect

to the hub radius parameter, d, is introduced in Figure 6. The
hub radius has an increasing effect on the value of the

centrifugal force so the hub radius parameter has an
increasing effect on the natural frequencies.

7. Conclusions

A new and semi-analytical technique called the DTM is

applied to the problem of a rotating Timoshenko beam in a

simple and accurate way, the natural frequencies are

calculated and related graphics are plotted. The effects of

the hub radius, rotary inertia, shear deformation and

rotational speed are investigated. The numerical results

indicate that the natural frequencies increase with the

rotational speed and hub radius while they decrease

with the rotary inertia (and shear deformation). The effect

Figure 4 The first five natural frequencies of a rotating Timoshenko beam ðh ¼ 4Þ (m0 corresponds to the natural frequencies of Bernoulli-Euler
beam)

Figure 3 The first five natural frequencies of a rotating Timoshenko beam
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of the rotary inertia (and shear deformation) is more

dominant on the higher modes. The calculated results are

compared with the ones in literature and great agreement is

considered.
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